Weighted projective Ricci curvature in Finsler geometry
نویسندگان
چکیده
منابع مشابه
On Randers metrics of reversible projective Ricci curvature
projective Ricci curvature. Then we characterize isotropic projective Ricci curvature of Randers metrics. we also show that Randers metrics are PRic-reversible if and only if they are PRic-quadratic../files/site1/files/0Abstract2.pdf
متن کاملNonholonomic Ricci Flows: I. Riemann Metrics and Lagrange–Finsler Geometry
In this paper, it is elaborated the theory the Ricci flows for manifolds enabled with nonintegrable (nonholonomic) distributions defining nonlinear connection structures. Such manifolds provide a unified geometric arena for nonholonomic Riemannian spaces, Lagrange mechanics, Finsler geometry, and various models of gravity (the Einstein theory and string, or gauge, generalizations). We follow th...
متن کاملFinsler metrics of scalar flag curvature and projective invariants
In this paper, we define a new projective invariant and call it W̃ -curvature. We prove that a Finsler manifold with dimension n ≥ 3 is of constant flag curvature if and only if its W̃ -curvature vanishes. Various kinds of projectively flatness of Finsler metrics and their equivalency on Riemannian metrics are also studied. M.S.C. 2010: 53B40, 53C60.
متن کاملThe Comparison Geometry of Ricci Curvature
We survey comparison results that assume a bound on the manifold’s Ricci curvature.
متن کاملIntrinsic Theory of Projective Changes in Finsler Geometry
The aim of the present paper is to provide an intrinsic investigation of projective changes in Finlser geometry, following the pullback formalism. Various known local results are generalized and other new intrinsic results are obtained. Nontrivial characterizations of projective changes are given. The fundamental projectively invariant tensors, namely, the projective deviation tensor, the Weyl ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematica Slovaca
سال: 2021
ISSN: 1337-2211,0139-9918
DOI: 10.1515/ms-2017-0446